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We have previously discussed the diffusion limited problem of the bounded one-dimensional multitrap
system where no external field is present, and pay special attention to the transmission of the diffusing particles
through the imperfect traps. We discuss here the case in which an external field is included to each trap and find
not only the transmission but also the energy associated with the diffusing particles in the presence and absence
of such a field. From the energy we find the specific l&aand show that for certain values of the parameters
associated with the multitrap system it behaves in a manner which is suggestive of phase transition. Moreover,
this phase transition is demonstrated not only through the conventional single peak at which the specific heat
function is undifferentiable but also through the less frequent phenomenon of double peaks.
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I. INTRODUCTION authorg11] to discuss phase transition and specific heat even

The diffusion of classical particles in the presence of trapt situations which are far from equilibrium. In this context
has been studied by various auth@ts5]. The idea of im- We note that it is well kr!c_)w_n that diffusion on a lattice can
perfect traps was introduced in Ré6] and elaborated fur- e mapped onto an equilibrium polymer probléh]. Note
ther by others[7,8] which study, especially, the nearest that the imperfect traps, which introduce the diffusivity in the
neighbors distance in the presence of a single imperfect trapnultitrap system, are characterized here by a rather small
We note that the imperfect trap may represent a model fogonstant trapping ratedenoted byk) as may be seen from
many real physical situations that are not easy to tackle dithe numerical work in which we assunke=1 compared to
rectly. Among these one may enumerate all the reactionghe value ofk= for the ideal traps. Thus the bounded mul-
including the chemical ones, in which the results for thetitrap array deviates only slightly from equilibrium. Also, the
reacting particles can not be predicted beforehand. That ifields added to this equation are entirelyiform as realized
these reactions may result in either the elimination of soméom the numerical part of this work. We may therefore dis-
of the reacting particles or changing the values of some&uss the specific heat and other thermodynamical variables.
physical parameters that are associated with them. Among We show in the following that the mentioned large
these parameters one may mention, for example, the transhanges in the energy entail, for certain values of the param-
mission and absorption coefficients of the diffusing particlesgters associated with the multitrap system, corresponding
their energy, and the other variables derived from it such atrge and even discontinuous changes in the specific@jeat
the specific heat, entropy, etc. In Ref8,10] the transmis- derived from it. That is, the specific heat actually goes
sion properties of these particles in the presends ohper-  through a phase transition which is demonstrated not only
fect traps, without any external field, were intensively dis-through the conventional undifferentiable single peak but
cussed for both cases of large and smwllt was found[9]  also through double peak$3-19. We note that double peak
that the largeiN is the higher is the transmission so that for phase transitions were fourjdi4] in the analogous quantum
N— o the probability that all the particles diffuse through all one-dimensional bounded multibarrier potential. Lieung and
the traps tends to unity. Neda[15] and also Kimet al.[16] have found double peaks

In this work we include an external field to each trap andin the form of the responsive curves which are apparently
find the effect of it upon the diffusing particles. We note thatassociated with dynamically induced phase transitions.
the case of a bias field in the presence of a single imperfectanakaet al. [17] have found such double peaks in antifer-
trap at the origin was discussed by Condafl. in Ref.[8]  romagnetic materials corresponding to magnetic phases
which studied among other things the effect of a uniformwhere the external magnetic field has a corresponding role to
field on the distribution of nearest neighbors distances. Iithe parametec here. Ko and Asakawgl 9] have found also
this work we introduce the bounded multitrap system anddouble peaks with regard to the phases of the quark-gluon
discuss not only the transmission that results from includingplasma which may be thought of as a large number of inter-
an external field to each trap but also the energy associateattions in a bounded region.
with the diffusing particles. This energy is discussed for both In Sec. Il we present the appropriate terminology and
cases of the existence and absence of a field and we shd&ms associated with the one-dimensional bounded imper-
that it is highly sensitive to the presence of it so that increasfect multitrap system as in Reff9,10]. We then show, using
ing its intensity by a small amount may result in a dispropor-the N (2 2) transfer matrices methd@0-232, that for cer-
tionally large change in the energies of the diffusing par-tain values of the parameters associated with the multitrap
ticles. system the transmission probability through all the traps

We note that although the physical situation is not strictlytends to unity in the presence of an external field. This was
of the equilibrium kind we follow the tendency of many shown[9,10 for the absence of field by applying the same
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method. Using the results of Sec. I, we calculate in Sec. llI l1=m=<N, t>0, (2)

the energy associated with the diffusing particles for both R

cases of the presence and absence of a bias field. For this W&€reXm denotes the left hand face of theth trap[see Eq.
use the singlé4N x4N) transfer matrixas done in Reff9]) (DI p(X,Xm,t) is the density of the diffusing particles amd

for calculating the coefficients of the density of the diffusing S the diffusion constant which is considered to have two
particles. In Sec. IV we calculate the relevant specific heat@/Ues;D; inside the traps an®, outside then{9,10. We

C,, and show that for certain values of the variables associ?t€ that one may generally find in the literature value of
ated with the bounded system it behaves in a manner whicl) the range 0.8D=0.3 (see, for example, p. 337 in Ref.
is suggestive of a phase transition. This is demonstrated iF24] Where it is noted that 0.5 cffsec is the order of mag-
the presence of undifferentiable discontinuous peaks in thgitude ofD at room temperature and atmospheric pregsure
curves ofCj, as a function of the temperature. Moreover, as/€ have assigned here f, andD; the respective values of
noted, we find for some values of the relevant variables tha?-8 @nd 0.4p(x, Xy, 1) and p,(X, Xm, 1) are, respectively, the
this phase transition is demonstrated in the form of doubldirst time derivative and the second spatial derivative. The
peaks. We then calculate the relevant critical exponents afarameterV is the diffusion velocity that results from the

sociated with these phase transitions. In Sec. V we conclud@esence of the field and its magnitude and sign represent,
with a brief summary. respectively, the intensity and direction of the field. The sec-

ond equation of the s&R) is the initial condition that at
=0 the first term of it signifies, through th# that there is an
Il. ONE-DIMENSIONAL BOUNDED IMPERFECT initial concentration of the particles at the left hand face of
MULTITRAP SYSTEM the trap located at=x,,, 1<m=N. The second term at the
We assume that the imperfect traps, through which théight han.d side denotes an additional initial_ configur_atio_n of
particles diffuse, are all characterized by the same width thdf1e density that depends uperandxy. The third equation is
depends upon their numbisrand the lengttt of the system. the boundary value condition which introduces the velocity
That is, denoting the total width of thé traps bya and the V' that results from the field. The parametedenotes the
total interval among them by we can see that the width of degree of imperfection of the trags Ref. [8] it is termed
each isa/N and the interval between any two neighbors isthe trapping rateso that in the limitk— - the trap becomes
b/N. We define as in Refg9,1q] the ratioc=b/a and ex- ideal in which case any partlclg that approaches it is ab-
pressa andb in terms ofc and the total lengthL=a+b as  Sorbed. We follow the procedure in Ref8,1( for V=0 and
a=L/(1+c),b=Lc/(1+c). The one-dimensional imperfect decompose the sé®) into two secondary sets as follows:

multibarrier system is assumed to be arrayed along the posi-
tive x axis so that it begins from the poink=b/N
=Lc/(N(1+c)) and ends ak=L. We also assume that &t

=0 the particles are concentrated, except for an initial con-
figuration f, at the left hand faces of the traps. The loca- . Vi, /2D R
tions of these faces, according to the mentioned arrangemeftX:Xm:0) =€ oX=Xm), O0<xXy<L, lsm=N,
of the multitrap system, are given by

pt(kamit) = DpXX(Xl)‘(mlt) - VpX(XI)‘(m!t)! 0 = Xixm = L,

l1=m=<N, t>0,

dp VY .
Lc L E = k+5 pXmt), Os=xp<L,
Xmy =M +(m-1 , 1=sm=<N. (1 =X
™~ N +0) ( )N(1+c) @ ”
It is assumed that each trap has the same field associated lsms<N, t>0, 3
with it so that any particle that approaches it may be, de-
pending on the direction of the field, either attracted or re- X, X t) = Dpy( X, Xmpt), 0< X, Xm=<L,
pelled by it. The corresponding initial and boundary value
problem[23] associated with the one-dimensional bounded 1<=m=<N t>0
imperfectN trap system i§8—10Q ’ ’
XX t) = Dy (X X 1) = Vo (X, X t),  0< X, X< L, p(X Xm0 =f(xX,0), 0<xXy<L, 1lsmsN,
1$m$N’ t>0’ p(f(m,t):O, 0<)‘(m$|_, 1$m$N, t>0. (4)

The set(4) is the ideal trap problem in which no external
p(X, X, 0) = e V*i/2D §(x — X + F(X, X, 0), field is present as may be realized from the absendeanid
V. The set(3) is the imperfect trap problem which includes
the external field and its initial condition contains only the
first term of the corresponding condition of the general set
(2). The solution of Eq(2) may be written as in Ref$9,10]
(see Eq(4) in Ref.[9)]),

O0sxXp<L, 1sms<N, t>0,

ap
JaX

ARPN N
= k+5 p(Xmt), 0=<x,<L,
X_i(m p(Xv)\(mat) = Ap]_(xy)\(mvt) + sz(xv)\(myt)a O = Xy)\(m = L1
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l1sms<N, t>0, (5 Txe.%) = T1a(X1, %) Tio(X, %)
where py(X,%m,t) is the solution of the initial and boundary P T %) Toolxa o)
value problem of the s&B) andp,(X,Xy,,t) is that of Eq.(4). where[9,10]
The ideal trap problem of Eq4) is the same as that dis-
cussed in Refg9,10 so, following the discussion there, we To(Xa %) = (D, X1, ) a(Dj, %o, ) (10
write for p,y(X, X, t) T2 (D, X ) (D, X t) |

. [ mX Dt#? . _
pz(x,xm,t):sm<1\7—>exp<— > ) 0<xX,=<L, T1axq,%) =0, (11)

m m

9)

_ 7(Di,Xp,t) [ E(Dg,X1,t) (D, X1,1) E(Dj, Xq, 1)
To1(Xq, %) = -
I1sms N, t>0. (6) 7](D0,X2,t) ﬂ(Di,Xl,t) Gf(Di,Xl,t) ﬂ(Di,Xl,t)
Regardingp; (X, X,,t) we may follow Condatt al. in Ref. N a(Do,Xl.t)( &(Di, %o, t)
[8], which discusses the proble(®) for the single trap at the a(Dj,x1,t) \ 7(Dg,X,t)
origin, and write the solution for the multitrap case as
g p _ a(Di!XZ!t)g(DmXth) ) (12)
N V(X - )\(m) Vzt e_(x - 5("1)2/2Dt a(DOYXZIt) 77(D01X2:t) ,
piXXpt)=exg —— = |\ —7——
2D 4D VDt
_ ﬂ(Do:let) n(Di!XZ!t)
Y vV \? v TooX1, %) = : (13
—|k+— | -exp Dt k+ — | +|k+— n(Diaxlit)n(DO!XZt)
2D 2D 2D _ .
. The parameters, & and » are given by(compare with the
e m}erfCl (x —in) V=0 case in Refs[9,10))
2\’Dt a(D,X;t):pl(D;X;t)
’ (k + i) ﬁ} } _ p(V(x ~ ¥m) V2t> g~ 4Dt
2D 4D VDt
. Y vV \? ( Y )
< <L, 1=sm=<N > 7 —|k+—|- Dtlk+ — | +(k+—
0 < X,Xn, , m , t>0, (7) ( ZD) exp{ ( 2D> D
where erf¢x) is the complementary error function defined as (x= %) v\ —
[25] erfo(x)=(2/\m) [ e*’du. In order to adapt the general ><(x—>‘<m)}er fc{ ="+ (k+ 5)\'Dt} ,
solution(5) to the boundedN multitrap system we may use, VDt
as in Refs.[9,10], either theN (2Xx2) transfer matrices (19
method[20,2] or the equivalent singlé4N X 4N) transfer
matrix formalism. We use in this section the(2 X 2) trans- _ da(D,x,t)
fer matrices method fo¥# 0 and write the general matrix §Dx1 =
equation[9,1Q] -
;{V(X— )‘(m) V2t> e—(x—xm) 14Dt
<A2N+1> ~T(a+h) 2D 4D Dt
B2N+1 s
" (k+i> _(x=Xw)
XT((N—1)(a+b)>7_<(N—2)(a+b)> D Dt
N N
- <k+ l>2 ex;{Dt(k+ l)2+ (k+ l)
x...7<”(a+b))7<(”‘l)(a+b)) 2D 2D 2D
N N (
X= )\(m) V) —
2(a+b a+b\(A X (X=X ]-erf +<k+—>\’Dt1
e et
N N /\B;
(15

where theA's andB’s are respectively the coefficients of the

imperfect and ideal trap components from Es). TheN 7T's . T . 2

in Eq. (8) are all two-dimensional transfer matrices that dif- 7(D, X, 1) = = o () D, (16)

fer from each other by the value &fonly [9]. Thus a repre- m

sentative one which relates the two faces of the same trap In order to find the densitg(x, X, t) from Eq.(5) at each
that are located, for example, atx; and x=X,, where point x in the multitrap system we have to determine the
X2>Xq, may be written a$9,10] coefficientsA andB of the imperfect and ideal trap compo-
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nents at this point. If, for example, this point happens to fallrange. We find thaTN ,, assumes very high values for either
at themth trap then one has to multipiy transfer matrices large N or smallL but whenL grows to a value which is
each of the kind given by Eqg10—<13). We denote the comparable to that o the componenty, may even de-
components of the tWO dimensional matrix that results fromerease to zero. It is also found that the largés the smaller
such a product b¥, ., Tm,,» Trm,,, @ndTy, , and those of any  the corresponding values @, become. For example, for
one of the multipliecdn matrices byZy (1), Zol), Tpy(1), and  y= 24,Ty,, assumes very small values of the order of'10
Tpi(1) where 1=I<m. Thus, as realized from Eg€l0)<(13)  pyt whenV decreases below 20 the value Tf,, becomes
(and from Ref.[10] for V=0), the componentSy ., Tn,,,  very large. Negative values & have a similar effect offy,,

Ty, @ndTy,, may be expressed recursively as as the corresponding positive ones. A3, increases for
larger values of the timeand decreases for smail.
Tny, = Tin- 1), 721(N) We thus find that there are rangesNfL, c, V, k, andt

for which the components of the total matff, that result
from theN products at the right hand side of E&), assume
=711(N)731(N=2) - -- T71(2) T34(2), the values offy, =1, Ty, =0, andTy_,=1. In this case all the
diffusing particles pass through all the traps in which case
the transmission is maximal. That is, the ideal and imperfect
trap components of the initial density do not change by the
presence of either the traps or the fie(ds both) in which
case the product of th transfer matrices at the right hand
side of Eq.(8) results in the two-dimensional unity matrix.
This is seen in Fig. 1 which is composed of the three panels
T, = Ton- 1, T2oN) A-C which respectively show three-dimensional surfaces of
22 2 the component3y, , Ty,,, andTy,, as functions ot andN.
= All three subfigures are drawn faf=15, k=1, D,=0.8, D;
_ _ay. .. =0.4,t=1, andL=5 and for the same ranges of 2N=1
= TdlNJ TN = 1)+ T 2) T D) (7 and 300=c=20. Panel A shows the componény | and one
It is found that the componeniy,  tends to unity for may see that for large values ofandN, Ty ,— 1. The same
growing values of the variabled or (and c. That is, the result is obtained also in panel C for the Componégy,
larger is either the number of traps or the intervals amongyhereas in panel B we see that for large values ath
them(or both, the higher is the tendency of the componentthe componenTy,, tends to zero. Thus subtituting these val-
Ty, to unity. Note that the same result has been found also ifyes in Eq.(8) and using the fact that one always H8sL0]
Ref. [9] for V=0 with respect to the same variablsandc T, =0 we obtain
[see the discussion there after E8Q)]. We also find regard- 12
ing the variableV that the lower its value, the smaller be-
comesTy, . The same result of smally _ is obtained also for (Agl) ~ (1 O) (Al)
negativeV. We also find thaﬂ'Nll—>0 for growing values of Ba: “\o 1 B,
the total lengthL and tends to unity for small values of it.
Also, Ty, increases for larger values of either the timer  That is, all the particles that approach the multitrap system

Tn, = Tin-1,,= " = T2, = T1(1) =0,

Ty, = Ton- 15, 22(N) + T - 1)11721(N) ;

(18

o pass through it without any decrease in either the ideal or the
Regarding the componerffy,, we find that it does not imperfect trap components of the density. Note that or
assume values outside the rar(@el). Also, its factors7,, =0 we have shown in Ref9] this unity value of the trans-

satisfy limy_...7,,=0 for x=~0 and limy_..7>,=1 for x=L  mission for the imperfect trap component of the denfsie
[see Eq(26) in Ref.[9] and the unnumbered equation after Eq. (28) therd and the same result is obtained in Rgf0]
Eq. (27)]. Thus, at largeN, the productTy,, also tends to for the ideal trap component.

either unity or 0. We also find for smatl that the larger is

either the number of trapd or the timet the more appar- I1l. ENERGY ASSOCIATED WITH THE BOUNDED

ently T,, tends to zero and this holds also for small values MULTITRAP SYSTEM

of L. When, howeverg increases'l’N22 clearly tends to unity.

Note thatTsz does not depend upon the variables seen We now discuss the energy associated with the diffusing

particles in the presence of an external field. We do this by
from Egs.(13) and(16). following the conventional discussion one may find in the
The componenty, may generally have any value from jiia ot re regarding diffusive systems in the absence of ex-
(=, +) but there are specific rangesNfL, ¢, V, k, andt  gmg fields(see, for example, Ref24]). The presence of
for which Ty, tends to zero. Thus it is found for growing  the field introduces an additional source of eneggsides
thatTy,, decreases quickly to zero if the increasing values ofhat related to the diffusion through the trapghich must be
c are small and slowly if these values are large. For exampletaken care of by adding an extra tefto the kinetic energy
increasingc in the range 26c<< causesTy,, to decrease that depends upon the velocity. We thus assume that the
so slowly that it may be regarded as almost constant over thiwtal energy is composed of two parts; kinetic and potential,
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T 2

N 5 jo0 200 300

(c) c

FIG. 1. The three panels A—C show three-dimensional surfaces of the compdpents, . andTN22 from Eq.(17) as a function of the
ratio ¢c and the number of trap¥ in the ranges of 308 ¢c=20 and 15=N=1. The other variables are assigned the following vallgs:
=0.8,D0;=0.4t=k=1,L=5. The parameters and N are obviously dimensionless and one may realize from E)s(17) that the three
componentsTy, ,, T, . andTN22 are also dimensionless. As seen, the compon‘E}mltlsandT,\‘22 tend to unity for the larger values afand
N and the componentky,, tends to zero. This signifies that all the diffusing particles pass the multitrap syséentq(18)].

where the former results from the diffusive motion andternal field and the plus and minus signs in front\&f2

the external field and the latter from the presence of the trapslenote, respectively, that the kinetic energy due to the field is
In the absence of any external field the particles diffuse withgither added folV>0 or subtracted wheW <0 from that

an average diffusion velocityp given, for the one-  que toyp. Note that for larget the kinetic energy from the

dimensional case, by Ref24] vp=y2D/t whereD is the |55t equation becomes zero since in this case pptind p,
diffusion constant. Note that since the two densities 'ns'd(?/anish as realized from Eqgs) and (7)

and outside the traps satisB; # D, then also the diffusion : ; . . .
e . . By following the conventional discussion of the energy in
velocity vp and the general density from Eq. (5) satisfy classical diffusive systemf24] we may conclude that the

Up, #Up, and pp, # pp,. AS remarked, the natural diffusive "y oo ic on the particles is related to the potential en-

motlon forv=0is t_owards the posnw):e axis so when a field ergy which originates from the presence of the traps. This
is present and points in that direction it accelerates the mo:

tion of the particles or decelerates it if it is oppositely di- force is assumed to be proportional to the trapping kase

rected. Thus we may write the kinetic energy of the dif“fusingfor very largek (ideal trap; It assumes maxmal values and
particles as for k=0 (absence of trapst vanishes. Also, since we have

always assigned throughout this work a rather small value of
1 unity for k which means that the imperfect traps have weak
EKV;;O(X,S(m,t) = Ep(x,km,t)(sz +\?) influence upon the particles we correspondingly assume an
inverse proportionality of the force to tlsguareddistance of
. . D V2 the particles from the traps. This means, as remarked, that
= [Ap1 (X Xmt) + BPZ(X'Xm't)]<T * ?) the particles feel the effect of the traps only at small dis-
tances from the traps. Thus one may write the force on any
particle that results from the trap &X,X,,) =—-gk/(X—Xy)?,
0<xXy<L, lsms<N, t>0, (19)  whereg is the proportionality constant and the minus sign
indicates an attractive force. Thus assuming that each trap
where po(X,Xm,t) and p;(x,Xy,t) are given by Eqs(6) and  serves as a central force source one may find the potential
(7). V is, as remarked, the velocity that results from the ex-energy from
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R (x=Xm) R the changes obtained are larger and found at smaller values
Ep(xXm) == [ F(xXm)dx of negativeV. This may be seen in panels C and D of Fig. 2
(X X) which are both drawn foN=5, %,=2Lc/N(1+c)+L/N(1
(X=X gk +c), k=g=t=1, L=30, D,=0.8, D;=0.4, 20=c=0.5, 40
= _J ) (" s 2)dx =x=0, and differ byV which is -0.5 for panel C and -0.8
(X=X (X Xm)

for D. Thus by comparing these two subfigures one may
1 1 realize that decreasing by only three-tenths from —0.5 to
~ gk (X=X B X - %) -0.8 results in a giant change of the energy fri@~ 10 in
" room panel C toE~ 10® in D. This entails, as will be shown in the
:—gk< 1 ) following section, a corresponding phase transition of the
(X=%p) /" specific heaC;,. One may explain these large changes of the
energy by reasoning that increasing the intensity of the field
0<xX,<L, lsm=N, (20) |V| beyond some limit causes the particles to overcome any
resistance related to the diffusion in the presence of traps.
where we assume that the reference paints at infinity.  Thus their energy increases disproportionally to the change
Thus we may write the total energy of the diffusing particlesof |v| that causes it. A similar behavior is encountered in
in the presence of field as laser tubeqg27] when the pumping energgfield) attains a
N - N 5 limit value which causes the intensity of the produced light
totaly . X Xm 1) = Bic o XX D) + Ep(X Xr), to increase in a phase transitional m)::mner. P ’
. It is expected, regarding the dependence of the energy
Os=xXp<L, 1sms<N, t>0, (21)  upon the trapping ratk, that the largek becomes the more

WhereEK(v#O)(x,Xm,t) and Ep(x, %) are given, respectively, controlled will be the diffusing particles by the traps in

i which case the kineticand the totgl energy of these par-
by Elqs.(19) and(20). In the absence of an external field the o5 decrease. This is shown from recalling that for
total energy is

=2,V=5k=1,t=¢g=1,L=30,D,=0.8, D;=0.4x=Lc/N(1

Etotal(vzo)(xikmvt) = EK(\,:Q)(X'km’t) + Ep(X, Xy +¢),20=c¢=0.5, and 4G=x=0 we have obtaiped that the
larger values of the energy ake=14000. Now, it has been,

numerically, found(not shown that if k is raised fromk=1

to k=5, keeping the values of all the other parameters as

before, the larger values of the energy are decreasdsl to

= 2 [Apy, X0 + sz(x,km,t)]% ~8000. Wherk=10 we find thatE ~5000 and fok=15 the

1
= EPV:O(X:kmat)E? + Ep(X,Xm)

2 largerE further decreases 6= 3000. A similar behavior of
decreasing energies for lardefs found also for negativ¥.
O0sxX,<L, 1lsms<N, t>0, (22
wherep, _ is the imperfect trap component of the density V. SINGLE- AND DOUBLE-PEAK PHASE TRANSITION
for V=0 and is g|£n aspy,_ =er f(xlzv’ﬁ)+exr(k2Dt IN THE SPECIFIC HEAT OF THE BOUNDED
+kx)er fo(kVDt+x/2yDt) [see Eq6) in Ref.[9]]. po(X,Xm,1) MULTITRAP SYSTEM
and Ep(x, X)) are given, respectively, by Eq&) and (20). The average energy from which one may derive most of

The coefficientsA and B in the last two equations are nu- the statistical mechanics variables such as the specific heat

merically determined in this section from the Singld\l Ch! the free energf, the entropﬁ etc., may be written as

X 4N) matrix method[see the discussion after E9) in (Erotal) = S Ejora€ PRI/ Se Pl where B=1/kyT, k, is the

Ref. [9]]. Boltzmann constant, arilis the temperature in kelvin. Sub-
We now show that increasiny| by even a small amount  stituting in the former equation the appropriate expression

may change the energy in such an unexpected manner thatigr g, from Egs.(21) or (23) yields, respectively, the av-

results, as seen in the following section, in a phase transitioBrage energy for the presence or absence of an external field.

of the corresponding specific he@),. This may realized From the expression of the average eneiffy,,) we obtain
from panels A-D of Fig. 2 which all show three dimensional ihe specific hea€,,

surfaces of the enerdy as function ofx andc. Panels A and

B are both drawn foN=2, ,=Lc/N(1+c), k=t=g=1, L o= 9 {Esotar?
=30,D,=0.8,D,;=0.4, 20=c=0.5, 40=x=0, and differ by " oaT

the value ofV which is 2 for panel A and 5 for B. Thus by

comparing them one may realize that increasihgy only _d > Eporal€ PEotal
three units causes a disproportionally large increasé& of TaT S & FEoel
from |E| =12 in panel A toE~ 14000 in B. This large jump

of energy entails a corresponding discontinuous change in 1, 5

the values of the specific he&, which implies, as will be = ;((Etoteu) = (Etota))- (23
shown, that it goes through a phase transition. The same

result is obtained also for negativebut compared td&/>0 Figure 3 shows a three dimensional surfaceCgffrom Eq.
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FIG. 2. Each of the four panels shows a three-dimensional surface of the energy fr@@lEas a function of and the ratioc. The
lengthx is given in units of cmg is dimensionless, and the enerByis given in units of ergs. Panels A and B are both drawnNer2,
D,=0.8,D;=0.4,t=k=g=1, L=30, andx,,=Lc/N(1+c) but V=2 for panel A andV=5 for B. Note that by increasing the value \éffrom
2 to 5 results in an unexpected large change of the energy|fdm 10 to E~ 14 000. Similar results are shown in panels C and D which
are both drawn fog=k=t=1, L=30,D,=0.8,D;=0.4,N=5, andX,,=2Lc/N(1+c)+L/N(1+c) but V=-0.5 for panel C an&/=-0.8 for D.
Note that the giant change frofE| ~18 in panel C toE~5X10° in panel D that results from slightly changing frok=-0.5 to
V=-0.8. The negative values & result from the negative potential energy.

(23) as function of the rati@ and the temperatur€ where  of the surface ofC;, obtained for large values dNf, is
no external field is present in which case the appropriat@avoided and this surface remains in its form and place. Un-
energy to be substituted in the last equation is that from Edike the case o/ +# 0, to be discussed below, we find fgr
(22). Figure 3 is drawn folN=2, k=1, L=30, t=1, g=1, =0 that except for the remarked points of discontinuity asso-
Xn=Lc/N(1+c), 20=c=0.5, and 16=T=0.1. As seen, the ciated with smaller values of and T there are no other
height of the surface fo€,, increases with growing values of points at whichCy, becomes discontinuous.
the ratioc untill some maximum(not shown in the figure We discuss now the specific he@f, obtained when an
One may also realize that at small valuescoind T the  external field is included with each trap. It is found, as for
surface ofC;, jumps upward to its local maximal values from the V=0 case, that the corresponding curves of the specific
which it descends in a similar manner to zero. These locaheatC,, jumps abruptly from zero for smadl andT to their
maxima are seen to be arrayed along horizontal lines whicmaximal values from which they similarly descend to zero.
form, in relation to their neighboring lines, a sharp edgeAlso, as for Fig. 3, these maximal values are arranged along
which becomes widened and flattenedcagrows. lines which form a sharp edge for smalland T which be-
The specific heaC,, is certainly undifferentiable at the come widened and flattened adncreases. The specific heat
sharp edge so it goes through a phase transition at thefanction is clearly undifferentiable along the sharp edge
points[13,26. We calculate at the following the critical ex- which implies, as for th&/=0 case, that it goes through a
ponentsy [26] associated with this and other discontinuities phase transitiofil 3,26 at these points. But, in contrast to the
of Cy,. We find that increasindyl or k or g, while keeping the former case, there exist other points, not at small values of
values of the other parameters constant, does not cause afty which the specific heat goes through a phase transition.
change in the form o€, shown in Fig. 3 except to its trans- This is demonstrated in Fig. 4 which is drawn f¢r5, N
lation from its position along the axis to one that tends to =2, k=g=t=1, L=30, X,,=Lc/N(1+c), and which is related
be aligned along th& axis. That is, the same surface@fis  not only to the more obvious discontinuity of the two spiky
rotated in thec-T plane for growing values dfl or k or g. If, columns at smalt and T but also to that of the apparently
on the other hand, the value of the total lengtls simulta-  continuous surface at largés. This is clearly shown in Fig.
neously increased with that &f then the remarked rotation 5 in which we isolate from the surface of Fig. 4 four curves
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FIG. 3. A three-dimensional
surface of the specific heat,
from Eg. (23) as function of the
ratio c and the temperatur€ and
in the absence of an external field.
The units ofC;, and T in this fig-
ure and in Fig. 4-6 are erg/K and
kelvins, respectively, and is di-
mensionless. The appropriate ex-
pression for the energy substituted
in Eqg. (23) is that from Eq.(22).
The figure is drawn foN=2, D,
=0.8, D;=0.4, L=30, k=g=t=1,
and Xp=Lc/N(1+c). Note the
sharp edge of the surface for small
¢ and T which becomes widened
and flattened as increases.
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of the specific hea€y, as a function of the temperatufefor ~ other values ot andN. This is indeed the case as we find
c=3,3.1,3.2,3.3. One can see that each curve of the fouinot shown herg for example, forN=4, 10.6=c=10, and
shown assumes the form of two inverted and indented teetk,,=2Lc/N(1+c)+L/N(1+c), which is the location of the
which are clearly undifferentiable and so they constitute deft hand face of the second trap.

double-peak phase transition. We thus see, as remarked, thatFrom the former discussion we see that for positive values
the unexpected large change in the values of the energy iof V there is associated a single peak for the smaller values
panel B of Fig. 2, which is drawn for the same values/of of ¢ and a double peak for some higher values of it. When
N, k, L, g, t, and %,, as those of Fig. 4 and 5, is affected we consider, however, negative values\bive find that the
through the double-peak phase transition of the correspondiouble peaks generally emerge for the smaller values of
ing specific heat of Fig. 5. This depends, as noted, upon th@his is demonstrated in the right hand panel of Fig. 6 which
value of X,=Lc/N(1+c), so we expect that changing its shows two curves of the specific he@t as function of the
value may result in finding double-peak phase transitions aemperatureT for V=-1.92, g=k=t=1, L=30, D,=0.8,

5 results in a large change of the

—
T ————
S s S

‘ : - FIG. 4. The specific hea€,
G "I”’[ RN from Eqg.(23) as function ofc and
¢ ; "%’[‘l’f T. This figure is drawn foN/=5,
; ”}M’ i N=2, D,=0.8, D;=0.4, L=30, k
”""’” =g=t=1, and X,=Lc/N(1+c).
34 ﬂ‘””” Note that these are the values for
’tm’ ’ which panel B of Fig. 2 is drawn.
c . ’t"”l"””’ Frr]om thath panlel &ef see that
h 2 changing the value ron 2 to
e'f;w
/

St v

L ”’ ’”” it energy. This change is demon-
1+ l””’ ”‘ / \ ‘, 0 strated in the discontinuity of;,
,’l”‘”l””’[”’[ TR ‘ \\\\\\\ for either smallc as in here or for
'l’l’l,’,’,,ll”,”l‘ il \\\\“ ' larger values of it as in Fig. 5. The
At " \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘\‘ :
0 22l \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\wﬂ“‘ units of C, and T are, as re-

: ‘ marked, erg/K and kelvins, re-
spectively, ana is dimensionless.
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18 T T T T T T
16
FIG. 5. The figure shows four
1.4F different curves of the specific
heat C,, in units of erg/K as a
function of the temperaturd& in
1.2r units of kelvins forN=2, V=5,
D,=0.8, D;=0.4, g=k=t=1, L
c 1k =30, X,,=Lc/N(1+c) and for the
h following four values of c; ¢
=3,3.1,3.2,3.3. The double peaks
0.8r are clearly seen in each curve.
Note that the spiky forms of Fig. 4
06 are obtained for exactly the same
values as in this figure except that
c is smaller. Thus one may con-
0.4 clude from Figs. 4 and 5 that for
positiveV there exist single peaks
ook for small ¢ and double peaks for
' the larger values of it.
0 | I | | 1 1
0 1 2 3 4 5 6 7

D;=0.4, X,=Lc/N(1+c), and for the two values oft  of the energy which is shown in panel C and D of Fig. 2 for
=0.39,0.4. In this case the first peaks of the two curves arexactly these values af,N,t,g,k, X, and in the neighbor-
small compared to the second peaks. The left hand panélood ofV=-0.5. These subfigures demonstrate, as remarked,
shows eight double-peak curves of the specific heat as fundhat slightly changing the value &f in the neighborhood of
tion of T for x,,=2Lc/N(1+C)+L/N(1+c), N=5,V=-0.37, V=-0.5 by only three-tenths changes the larger values of the
g=k=t=1, and c=1.5+0.065,n=1,2,...7. These phase energy from/E|~10'to E~1C. This change in the energy
transitions ofCy, correspond to the unexpected large changds demonstrated in the double-peak phase transition shown in

25 . . . 3.5 : : : :
3
2r FIG. 6. The two panels show
o5 double peaks of the specific heat
‘ C,;, as a function ofT for negative
V and D,=0.8, D;=0.4, g=k=t
15 =1, andL=30. The panel at the
2 left shows eight double-peak
c c curves for N=5, V=-0.37, X
h h =2Lc/N(1+c)+L/N(1+c), and
15 the eight values of c=1.5
1H +0.06%,n=1,2,...7. Thepanel
at the right shows two double-
peak curves folN=4, V=-1.92,
1 Xm=Lc/N(1+c), and the two val-
ues 0fc=0.39,0.4.C,, and T are
0.5 given in units of erg/K and
0.5 kelvins, respectively.
0 ' : : 0 ! ! ! !
0 1 2 3 4 0 0.2 04 0.6 0.8 1
T T
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the left hand panel of Fig. 6. Note that all the eight first Ci(e) =A+BeX, (24)

peaks, as well as all the second peaks, touch each other and

seem as one curve. The appropriate energy to be associated

with negativeV is that of the expressio(®1) in which one

should take, as remarked, the minus sign in fronVaf2. where e=(T-T,)/T; and A, B are constant. The first order
We may suggest an explanation for the occurrence of thderivative ofC;(€) diverges afl =T, so the critical exponent

mentioned large changes in the energy which entail the cory may be obtained froni26]

responding discontinuous peaks in the specific lgatWe

confine our attention to the discussed exampleslo® and

N=5 when one respectively changes fran2 to V=5 and

from V=-0.5 toV=-0.8. As remarked, the change éffor . n B
N=2 entails a change in the larger values of the energy from ~ __In|Cy(e)] _ _ X
E~12 to E~14000. Looking at the expressiqt9) for E x=1 +£T(‘) In(e) +€|'LT(‘) n(e) (29

one may realize that the large increaseEimesults from a
corresponding increase of the imperfect dengityrom Eq.
(7) (the ideal densityp, does not depend upovi and so it
does not change withl [see Eq(6)]). As seen from Eq(7)

the dependence qf; uponV is mainly exponential. Thus ¢ yhe specific heat with respect & The value ofy may be
whenV changes from 2 to 5 we find ior the raig,_/p1,_,  optained by plotting the curve dE(e) in the close neigh-
the value ofpy_/py, ,=2.3096x 10" where we use the porhooq of T=T, and one can see from Figs. 3—-6 that
same values used for all the other parameters that lead tsumes different values. Thus assigning to the constants
panel A and B of Fig. 2. That is, the density fo'=5 has B the respective values of 0 and 1 and plotting, as remarked,
enormously grows in relation to that f&f=2. This is to be  the graphs ofC(e) in the immediate neighborhood of the
compared, for example, to water when one lower its teMsingle peaks in Fig. 3, which are located at sntadind T,

perature from the gaseous state to the liquid one in which, may calculatg, using Eqs(24) and(25) asX~%. This

case_t_he density of th_e water _mo_lecules grows in a IOhaS\(7alue changes with respect to the single peaks of Fig. 4
transitional manner. This behavior is repeated when one CONhich are also located at smalandT. That is repeating the
tinues to decrease the temperature to 0°C from the quuigv ) '

. 3
state to the solid one in which case the density of the waterame procedure one may obFam the valugefs. For the_
molecules increases again in a phase transition manner. VNt first and second peaks in the left hand panel of Fig. 6
have mentioned in the previous section the example of lasé¥e find the respective values gf< 5 andy~ 3. Thex of the
tubes for which the intensity of light increases greatly whendouble peaks of Fig. 5 and also of the first peaks in the right
the pumping energycorresponding t&/ here attains a spe- hand panel of Fig. 6 ig~:.
cific value. This occurs because a macroscopic aggregate of Comparing the phase transition behavior of the bounded
atoms has been transferred by the pumping energy into thene-dimensional multitrap system to that of the correspond-
appropriate laser stafd1]. A similar growth of the density ing quantum array of the bounded one-dimensional multibar-
occurs, as remarked, also here when one increasd$=f@r rier potential[14] one may notice the following similarities
the velocityV from 2 to 5. and differences: The specific heats of both systems exhibit
The double peaks shown in Fig. 6 which are associatethe same discontinuous jump at small value§ @&ndc but
with small negativeV may be explained by noting that the whereas in the multitrap systef@, decreases, for growing
external diffusion constant employed hereDg=0.8 (the values ofT, to zero the corresponding quantu®y does not
internal diffusion constant is even low®;=0.4). That is, vanish but tends, for largg, to a finite valugsee Figs. 1-7
when one turns on an external field which is directed oppoin Ref. [14]). Also, the phenomenon of the double peaks at
site to the diffusive motion then when the value of this fieldwhich the specific heat,, is undifferentiable is discernable
becomesv=-0.8 it actually neutralizes and cancels the in-in both systems.
fluence of the traps on the particles so that their energy be- The variation of the critical exponentmay be explained
comes very large. by noticing from Figs. 3—6 that the different peaks shown in
The appearance of the double peaks for these valu¥s of these figures correspond to different valuesNoAndc. Re-
demonstrates furthgimore than the single pegplkthe large  membering thatN and c respectively denote the number of
change that the density and the energy have passed througthps and the ratio of their total interval to their total width
whenV changes as described. We must, however, note thaine may realize that they, actually, control the shape and
these peaks depend not only upémut also upon the other form of the multitrap system. That is, Figs. 3—6 with the
parameters, such as$, x,, t, etc., that control the behavior different values ofN and c actually correspond tdifferent
of E. systemshrough which the particles pass and not to different
One may calculate the related critical exponentf26] parameters of the same system. Thus one may expect differ-
associated with these phase transitions by using the followent values of the critical exponent to be associated with these
ing equation in the neighborhood of the critical temperaturedifferent systems. We note, however, that the difference be-
T, [26]: tween these values is not large.

where the unity term denotes the first order derivafDﬁ(ae)
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Using the expression@1) and (22) for the energy one were also used here in the presence of it. Thus khe
may obtain the other variables of statistical mechanics. Fof2 x 2) transfer matrices were used, as in R&f, for dis-
example, the free enerdy is calculated, for either the pres- cussing the transmission through the multitrap system for
ence or absence of the external field, from RE4]  v+0 and the singlé4N x 4N) transfer matrix for studying
F=—k,T In(Ze™#Fow). Using the last equation one may write the energy and the corresponding specific h@at It has

the entropyS for the multitrap systenfi24], been found, as for the#=0 case in Ref[9], that for certain
JF values of the parameters associated with the system the
S=-— transmission coefficierj®, 10 of the diffusing particles tends

al to unity whenN and ¢ become large in which case all the
d _ particles diffuse through all the traps. This has been shown
= (9_1—[ka In(E € BEmta')] not only for positiveV which pushes the particles towards
S £ e ou the trlaps but 3Isohfor negativz values c:tfb;]t that repel the
_ total particles towards the negative direction of thaxis.
=k '”(2 e BE"’ta') *kof3 S e fom (26) The unique characteristics of the mutitrap system become
more unexpected regarding the energy of the diffusing par-
ticles in the presence of an external field. Thus it has been
found that increasiny, for either positive or negative values
of it, by even a small amount results in a disproportionally
ge increase in the energy of the diffusing particles so that
trying to calculate the related specific hé&atwe find that it
goes through a phase transition. Moreover, for certain values
of the parameters associated with the multitrap system, such
as its total length_, the number of trap#, the ratioc, the
time t, the locationx,, at which the particles are initially
We have discussed the diffusion limited problem relatedconcentrated, and the fied, one may find that the men-
to the bounded one-dimensional imperfect multitrap systentioned phase transition is demonstrated in the form of a
in the presence of external fieM The analytical methods double peak. The value of the related critical exponents as-
previously used9,10] to discuss the transmission of the par- sociated with these phase transitions were found to vary be-
ticles through this system in the absence of an external fieIdNeené andg.

As for the specific hea€C,, one may drawsS for different
values of the parametem, k, g, Xy, t, L, andc. If, for
example, we draw the surface 8ffor exactly the same val-
ues of the mentioned parameters as those of Fig. 4 one m
see(not shown hergtwo separate lobes for smailand T
which correspond to the two spiky columns of Fig. 4.

V. CONCLUDING REMARKS
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