
Phase transition in the bounded one-dimensional multitrap system

D. Bar
Department of Physics, Bar Ilan University, Ramat Gan, Israel

(Received 17 August 2003; revised manuscript received 13 November 2003; published 23 July 2004)

We have previously discussed the diffusion limited problem of the bounded one-dimensional multitrap
system where no external field is present, and pay special attention to the transmission of the diffusing particles
through the imperfect traps. We discuss here the case in which an external field is included to each trap and find
not only the transmission but also the energy associated with the diffusing particles in the presence and absence
of such a field. From the energy we find the specific heatCh and show that for certain values of the parameters
associated with the multitrap system it behaves in a manner which is suggestive of phase transition. Moreover,
this phase transition is demonstrated not only through the conventional single peak at which the specific heat
function is undifferentiable but also through the less frequent phenomenon of double peaks.
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I. INTRODUCTION

The diffusion of classical particles in the presence of traps
has been studied by various authors[1–5]. The idea of im-
perfect traps was introduced in Ref.[6] and elaborated fur-
ther by others[7,8] which study, especially, the nearest
neighbors distance in the presence of a single imperfect trap.
We note that the imperfect trap may represent a model for
many real physical situations that are not easy to tackle di-
rectly. Among these one may enumerate all the reactions,
including the chemical ones, in which the results for the
reacting particles can not be predicted beforehand. That is,
these reactions may result in either the elimination of some
of the reacting particles or changing the values of some
physical parameters that are associated with them. Among
these parameters one may mention, for example, the trans-
mission and absorption coefficients of the diffusing particles,
their energy, and the other variables derived from it such as
the specific heat, entropy, etc. In Refs.[9,10] the transmis-
sion properties of these particles in the presence ofN imper-
fect traps, without any external field, were intensively dis-
cussed for both cases of large and smallN. It was found[9]
that the largerN is the higher is the transmission so that for
N→` the probability that all the particles diffuse through all
the traps tends to unity.

In this work we include an external field to each trap and
find the effect of it upon the diffusing particles. We note that
the case of a bias field in the presence of a single imperfect
trap at the origin was discussed by Condatet al. in Ref. [8]
which studied among other things the effect of a uniform
field on the distribution of nearest neighbors distances. In
this work we introduce the bounded multitrap system and
discuss not only the transmission that results from including
an external field to each trap but also the energy associated
with the diffusing particles. This energy is discussed for both
cases of the existence and absence of a field and we show
that it is highly sensitive to the presence of it so that increas-
ing its intensity by a small amount may result in a dispropor-
tionally large change in the energies of the diffusing par-
ticles.

We note that although the physical situation is not strictly
of the equilibrium kind we follow the tendency of many

authors[11] to discuss phase transition and specific heat even
at situations which are far from equilibrium. In this context
we note that it is well known that diffusion on a lattice can
be mapped onto an equilibrium polymer problem[12]. Note
that the imperfect traps, which introduce the diffusivity in the
multitrap system, are characterized here by a rather small
constant trapping rate(denoted byk) as may be seen from
the numerical work in which we assumek=1 compared to
the value ofk=` for the ideal traps. Thus the bounded mul-
titrap array deviates only slightly from equilibrium. Also, the
fields added to this equation are entirelyuniform as realized
from the numerical part of this work. We may therefore dis-
cuss the specific heat and other thermodynamical variables.

We show in the following that the mentioned large
changes in the energy entail, for certain values of the param-
eters associated with the multitrap system, corresponding
large and even discontinuous changes in the specific heatCh
derived from it. That is, the specific heat actually goes
through a phase transition which is demonstrated not only
through the conventional undifferentiable single peak but
also through double peaks[13–19]. We note that double peak
phase transitions were found[14] in the analogous quantum
one-dimensional bounded multibarrier potential. Lieung and
Neda[15] and also Kimet al. [16] have found double peaks
in the form of the responsive curves which are apparently
associated with dynamically induced phase transitions.
Tanakaet al. [17] have found such double peaks in antifer-
romagnetic materials corresponding to magnetic phases
where the external magnetic field has a corresponding role to
the parameterc here. Ko and Asakawa[19] have found also
double peaks with regard to the phases of the quark-gluon
plasma which may be thought of as a large number of inter-
actions in a bounded region.

In Sec. II we present the appropriate terminology and
terms associated with the one-dimensional bounded imper-
fect multitrap system as in Refs.[9,10]. We then show, using
the N s232d transfer matrices method[20–22], that for cer-
tain values of the parameters associated with the multitrap
system the transmission probability through all the traps
tends to unity in the presence of an external field. This was
shown[9,10] for the absence of field by applying the same
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method. Using the results of Sec. II, we calculate in Sec. III
the energy associated with the diffusing particles for both
cases of the presence and absence of a bias field. For this we
use the singles4N34Nd transfer matrix(as done in Ref.[9])
for calculating the coefficients of the density of the diffusing
particles. In Sec. IV we calculate the relevant specific heat
Ch and show that for certain values of the variables associ-
ated with the bounded system it behaves in a manner which
is suggestive of a phase transition. This is demonstrated in
the presence of undifferentiable discontinuous peaks in the
curves ofCh as a function of the temperature. Moreover, as
noted, we find for some values of the relevant variables that
this phase transition is demonstrated in the form of double
peaks. We then calculate the relevant critical exponents as-
sociated with these phase transitions. In Sec. V we conclude
with a brief summary.

II. ONE-DIMENSIONAL BOUNDED IMPERFECT
MULTITRAP SYSTEM

We assume that the imperfect traps, through which the
particles diffuse, are all characterized by the same width that
depends upon their numberN and the lengthL of the system.
That is, denoting the total width of theN traps bya and the
total interval among them byb we can see that the width of
each isa/N and the interval between any two neighbors is
b/N. We define as in Refs.[9,10] the ratioc=b/a and ex-
pressa and b in terms ofc and the total lengthL=a+b as
a=L / s1+cd ,b=Lc/ s1+cd. The one-dimensional imperfect
multibarrier system is assumed to be arrayed along the posi-
tive x axis so that it begins from the pointx=b/N
=Lc/ (Ns1+cd) and ends atx=L. We also assume that att
=0 the particles are concentrated, except for an initial con-
figuration f, at the left hand faces of theN traps. The loca-
tions of these faces, according to the mentioned arrangement
of the multitrap system, are given by

x
8

m = m
Lc

Ns1 + cd
+ sm− 1d

L

Ns1 + cd
, 1 ø mø N. s1d

It is assumed that each trap has the same field associated
with it so that any particle that approaches it may be, de-
pending on the direction of the field, either attracted or re-
pelled by it. The corresponding initial and boundary value
problem [23] associated with the one-dimensional bounded
imperfectN trap system is[8–10]

rtsx,x̀m,td = Drxxsx,x̀m,td − Vrxsx,x̀m,td, 0 ø x,x̀m ø L,

1 ø mø N, t . 0,

rsx,x̀m,0d = e−Vx̀m/2Ddsx − x̀md + fsx,x̀m,0d,

0 ø x,x̀m ø L, 1 ø mø N, t . 0,

U ] r

] x
U

x=x̀m

= Sk +
V

D
Drsx̀m,td, 0 ø x̀m ø L,

1 ø mø N, t . 0, s2d

wherex̀m denotes the left hand face of themth trap[see Eq.
(1)]. rsx, x̀m,td is the density of the diffusing particles andD
is the diffusion constant which is considered to have two
values;Di inside the traps andDo outside them[9,10]. We
note that one may generally find in the literature values ofD
in the range 0.9ùDù0.3 (see, for example, p. 337 in Ref.
[24] where it is noted that 0.5 cm2/sec is the order of mag-
nitude ofD at room temperature and atmospheric pressure).
We have assigned here forDo andDi the respective values of
0.8 and 0.4.rtsx, x̀m,td andrxxsx, x̀m,td are, respectively, the
first time derivative and the second spatial derivative. The
parameterV is the diffusion velocity that results from the
presence of the field and its magnitude and sign represent,
respectively, the intensity and direction of the field. The sec-
ond equation of the set(2) is the initial condition that att
=0 the first term of it signifies, through thed, that there is an
initial concentration of the particles at the left hand face of
the trap located atx= x̀m,1ømøN. The second term at the
right hand side denotes an additional initial configuration of
the density that depends uponx andx8m. The third equation is
the boundary value condition which introduces the velocity
V that results from the field. The parameterk denotes the
degree of imperfection of the traps(in Ref. [8] it is termed
the trapping rate) so that in the limitk→` the trap becomes
ideal in which case any particle that approaches it is ab-
sorbed. We follow the procedure in Refs.[9,10] for V=0 and
decompose the set(2) into two secondary sets as follows:

rtsx,x̀m,td = Drxxsx,x̀m,td − Vrxsx,x̀m,td, 0 ø x,xm ø L,

1 ø mø N, t . 0,

rsx,x̀m,0d = e−Vx̀m/2Ddsx − x̀md, 0 ø x,xm ø L, 1 ø mø N,

U ] r

] x
U

x=x̀m

= Sk +
V

D
Drsx̀m,td, 0 ø xm ø L,

1 ø mø N, t . 0, s3d

rtsx,x̀m,td = Drxxsx,x̀m,td, 0 , x,x̀m ø L,

1 ø mø N, t . 0,

rsx,x̀m,0d = fsx,x̀,0d, 0 , x,x̀m ø L, 1 ø mø N,

rsx̀m,td = 0, 0, x̀m ø L, 1 ø mø N, t . 0. s4d

The set(4) is the ideal trap problem in which no external
field is present as may be realized from the absence ofk and
V. The set(3) is the imperfect trap problem which includes
the external field and its initial condition contains only the
first term of the corresponding condition of the general set
(2). The solution of Eq.(2) may be written as in Refs.[9,10]
(see Eq.(4) in Ref. [9]),

rsx,x̀m,td = Ar1sx,x̀m,td + Br2sx,x̀m,td, 0 ø x,x̀m ø L,
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1 ø mø N, t . 0, s5d

wherer1sx, x̀m,td is the solution of the initial and boundary
value problem of the set(3) andr2sx, x̀m,td is that of Eq.(4).
The ideal trap problem of Eq.(4) is the same as that dis-
cussed in Refs.[9,10] so, following the discussion there, we
write for r2sx, x̀m,td

r2sx,x̀m,td = sin Spx

x̀m
DexpS−

Dtp2

x̀m
2 D, 0 ø x,x̀m ø L,

1 ø mø N, t . 0. s6d

Regardingr1sx, x̀m,td we may follow Condatet al. in Ref.
[8], which discusses the problem(3) for the single trap at the
origin, and write the solution for the multitrap case as

r1sx,x̀m,td = expSVsx − x̀md
2D

−
V2t

4D
DHe−sx − x̀md2/2Dt

ÎpDt

− Sk +
V

2D
D · expFDtSk +

V

2D
D2

+ Sk +
V

2D
D

3sx − x̀mdGerfcF sx − x̀md
2ÎDt

+ Sk +
V

2D
DÎDtGJ ,

0 , x,x̀m ø L, 1 ø mø N, t . 0, s7d

where erfcsxd is the complementary error function defined as

[25] erfcsxd=s2/Îpdex
` e−u2

du. In order to adapt the general
solution(5) to the boundedN multitrap system we may use,
as in Refs.[9,10], either theN s232d transfer matrices
method[20,21] or the equivalent singles4N34Nd transfer
matrix formalism. We use in this section theN s232d trans-
fer matrices method forVÞ0 and write the general matrix
equation[9,10]

SA2N+1

B2N+1
D = Tsa + bd

3TS sN − 1dsa + bd
N

DTS sN − 2dsa + bd
N

D
3 ¯ TSnsa + bd

N
DTS sn − 1dsa + bd

N
D

3 ¯ TS2sa + bd
N

DTSa + b

N
DSA1

B1
D , s8d

where theA’s andB’s are respectively the coefficients of the
imperfect and ideal trap components from Eq.(5). TheN T’s
in Eq. (8) are all two-dimensional transfer matrices that dif-
fer from each other by the value ofx only [9]. Thus a repre-
sentative one which relates the two faces of the same trap
that are located, for example, atx=x1 and x=x2, where
x2.x1, may be written as[9,10]

Tsx1,x2d = FT11sx1,x2d T12sx1,x2d

T21sx1,x2d T22sx1,x2d G , s9d

where[9,10]

T11sx1,x2d =
asDo,x1,tdasDi,x2,td
asDi,x1,tdasDo,x2,td

, s10d

T12sx1,x2d = 0, s11d

T21sx1,x2d =
hsDi,x2,td
hsDo,x2,td

S jsDo,x1,td
hsDi,x1,td

−
asDo,x1,tdjsDi,x1,td
asDi,x1,tdhsDi,x1,td

D
+

asDo,x1,td
asDi,x1,td

S jsDi,x2,td
hsDo,x2,td

−
asDi,x2,tdjsDo,x2,td
asDo,x2,tdhsDo,x2,td

D , s12d

T22sx1,x2d =
hsDo,x1,tdhsDi,x2,td
hsDi,x1,tdhsDo,x2,td

. s13d

The parametersa, j, andh are given by(compare with the
V=0 case in Refs.[9,10])

asD,x,td = r1sD,x,td

= expSVsx − x̀md
2D

−
V2t

4D
DHe−sx − x̀md2/4Dt

ÎpDt

− Sk +
V

2D
D · expFDtSk +

V

2D
D2

+ Sk +
V

2D
D

3sx − x̀mdGer fcF sx − x̀md
2ÎDt

+ Sk +
V

2D
DÎDtGJ ,

s14d

jsD,x,td =
] asD,x,td

] x

= expSVsx − x̀md
2D

−
V2t

4D
DHe−sx − x̀md2/4Dt

ÎpDt

3FSk +
V

2D
D −

sx − x̀md
2Dt

G
− Sk +

V

2D
D2

· expFDtSk +
V

2D
D2

+ Sk +
V

2D
D

3sx − x̀mdG · er fcF sx − x̀md
2ÎDt

+ Sk +
V

2D
DÎDtGJ

s15d

hsD,x̀m,td = −
p

x̀m

e−sp/x̀md2Dt. s16d

In order to find the densityrsx, x̀m,td from Eq.(5) at each
point x in the multitrap system we have to determine the
coefficientsA andB of the imperfect and ideal trap compo-
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nents at this point. If, for example, this point happens to fall
at themth trap then one has to multiplym transfer matrices
each of the kind given by Eqs.(10)–(13). We denote the
components of the two-dimensional matrix that results from
such a product byTm11

, Tm12
, Tm21

, andTm22
and those of any

one of the multipliedm matrices byT11sld, T12sld, T21sld, and
T22sld where 1ø l øm. Thus, as realized from Eqs.(10)–(13)
(and from Ref.[10] for V=0), the componentsTN11

, TN12
,

TN21
, andTN22

may be expressed recursively as

TN11
= TsN − 1d11

T11sNd

= ¯

= T11sNdT11sN − 1d ¯ T11s2dT11s1d,

TN12
= TsN − 1d12

= ¯ = T212
= T12s1d = 0,

TN21
= TsN − 1d21

T22sNd + TsN − 1d11
T21sNd,

TN22
= TsN − 1d22

T22sNd

= ¯

= T22sNdT22sN − 1d ¯ T22s2dT22s1d. s17d

It is found that the componentTN11
tends to unity for

growing values of the variablesN or (and) c. That is, the
larger is either the number of traps or the intervals among
them (or both), the higher is the tendency of the component
TN11

to unity. Note that the same result has been found also in
Ref. [9] for V=0 with respect to the same variablesN andc
[see the discussion there after Eq.(30)]. We also find regard-
ing the variableV that the lower its value, the smaller be-
comesTN11

. The same result of smallTN11
is obtained also for

negativeV. We also find thatTN11
→0 for growing values of

the total lengthL and tends to unity for small values of it.
Also, TN11

increases for larger values of either the timet or
x8m.

Regarding the componentTN22
we find that it does not

assume values outside the ranges0,1d. Also, its factorsT22

satisfy limN→`T22=0 for x<0 and limN→`T22=1 for x<L
[see Eq.(26) in Ref. [9] and the unnumbered equation after
Eq. (27)]. Thus, at largeN, the productTN22

also tends to
either unity or 0. We also find for smallc that the larger is
either the number of trapsN or the timet the more appar-
ently TN22

tends to zero and this holds also for small values
of L. When, however,c increasesTN22

clearly tends to unity.
Note thatTN22

does not depend upon the variableV as seen
from Eqs.(13) and (16).

The componentTN21
may generally have any value from

s−` , +`d but there are specific ranges ofN, L, c, V, k, andt
for which TN21

tends to zero. Thus it is found for growingc
thatTN21

decreases quickly to zero if the increasing values of
c are small and slowly if these values are large. For example,
increasingc in the range 20øcø` causesTN21

to decrease
so slowly that it may be regarded as almost constant over this

range. We find thatTN21
assumes very high values for either

large N or small L but whenL grows to a value which is
comparable to that ofN the componentTN21

may even de-
crease to zero. It is also found that the largerV is the smaller
the corresponding values ofTN21

become. For example, for
Vù24, TN21

assumes very small values of the order of 10−11

but whenV decreases below 20 the value ofTN21
becomes

very large. Negative values ofV have a similar effect onTN21
as the corresponding positive ones. Also,TN21

increases for
larger values of the timet and decreases for smallx̀m.

We thus find that there are ranges ofN, L, c, V, k, and t
for which the components of the total matrixTN, that result
from theN products at the right hand side of Eq.(8), assume
the values ofTN11

=1, TN21
=0, andTN22

=1. In this case all the
diffusing particles pass through all the traps in which case
the transmission is maximal. That is, the ideal and imperfect
trap components of the initial density do not change by the
presence of either the traps or the fields(or both) in which
case the product of theN transfer matrices at the right hand
side of Eq.(8) results in the two-dimensional unity matrix.
This is seen in Fig. 1 which is composed of the three panels
A−C which respectively show three-dimensional surfaces of
the componentsTN11

, TN21
, andTN22

as functions ofc andN.
All three subfigures are drawn forV=15, k=1, Do=0.8, Di
=0.4, t=1, andL=5 and for the same ranges of 15ùNù1
and 300ùcù20. Panel A shows the componentTN11

and one
may see that for large values ofc andN, TN11

→1. The same
result is obtained also in panel C for the componentTN22
whereas in panel B we see that for large values ofc andN
the componentTN21

tends to zero. Thus subtituting these val-
ues in Eq.(8) and using the fact that one always has[9,10]
TN12

=0 we obtain

SA31

B31
D = S1 0

0 1
DSA1

B1
D . s18d

That is, all the particles that approach the multitrap system
pass through it without any decrease in either the ideal or the
imperfect trap components of the density. Note that forV
=0 we have shown in Ref.[9] this unity value of the trans-
mission for the imperfect trap component of the density[see
Eq. (28) there] and the same result is obtained in Ref.[10]
for the ideal trap component.

III. ENERGY ASSOCIATED WITH THE BOUNDED
MULTITRAP SYSTEM

We now discuss the energy associated with the diffusing
particles in the presence of an external field. We do this by
following the conventional discussion one may find in the
literature regarding diffusive systems in the absence of ex-
ternal fields(see, for example, Ref.[24]). The presence of
the field introduces an additional source of energy(besides
that related to the diffusion through the traps) which must be
taken care of by adding an extra term(to the kinetic energy)
that depends upon the velocityV. We thus assume that the
total energy is composed of two parts; kinetic and potential,
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where the former results from the diffusive motion and
the external field and the latter from the presence of the traps.
In the absence of any external field the particles diffuse with
an average diffusion velocityv̄D given, for the one-
dimensional case, by Ref.[24] v̄D=Î2D / t where D is the
diffusion constant. Note that since the two densities inside
and outside the traps satisfyDi ÞDo then also the diffusion
velocity v̄D and the general densityr from Eq. (5) satisfy
v̄Di

Þ v̄Do
and rDi

ÞrDo
. As remarked, the natural diffusive

motion forV=0 is towards the positivex axis so when a field
is present and points in that direction it accelerates the mo-
tion of the particles or decelerates it if it is oppositely di-
rected. Thus we may write the kinetic energy of the diffusing
particles as

EKVÞ0
sx,x̀m,td =

1

2
rsx,x̀m,tdsvD

2 ± V2d

= fAr1sx,x̀m,td + Br2sx,x̀m,tdgSD

t
±

V2

2
D ,

0 ø x,x̀m ø L, 1 ø mø N, t . 0, s19d

wherer2sx, x̀m,td and r1sx, x̀m,td are given by Eqs.(6) and
(7). V is, as remarked, the velocity that results from the ex-

ternal field and the plus and minus signs in front ofV2/2
denote, respectively, that the kinetic energy due to the field is
either added forV.0 or subtracted whenV,0 from that
due to v̄D. Note that for larget the kinetic energy from the
last equation becomes zero since in this case bothr1 andr2

vanish as realized from Eqs.(6) and (7).
By following the conventional discussion of the energy in

classical diffusive systems[24] we may conclude that the
force that acts on the particles is related to the potential en-
ergy which originates from the presence of the traps. This
force is assumed to be proportional to the trapping ratek so
for very largek (ideal traps) it assumes maximal values and
for k=0 (absence of traps) it vanishes. Also, since we have
always assigned throughout this work a rather small value of
unity for k which means that the imperfect traps have weak
influence upon the particles we correspondingly assume an
inverse proportionality of the force to thesquareddistance of
the particles from the traps. This means, as remarked, that
the particles feel the effect of the traps only at small dis-
tances from the traps. Thus one may write the force on any
particle that results from the trap asFsx, x̀md=−gk/ sx− x̀md2,
whereg is the proportionality constant and the minus sign
indicates an attractive force. Thus assuming that each trap
serves as a central force source one may find the potential
energy from

FIG. 1. The three panels A–C show three-dimensional surfaces of the componentsTN11
, TN21

, andTN22
from Eq.(17) as a function of the

ratio c and the number of trapsN in the ranges of 300ùcù20 and 15ùNù1. The other variables are assigned the following values:Do

=0.8,Di =0.4,t=k=1,L=5. The parametersc and N are obviously dimensionless and one may realize from Eqs.(6)–(17) that the three
componentsTN11

, TN21
, andTN22

are also dimensionless. As seen, the componentsTN11
andTN22

tend to unity for the larger values ofc and
N and the componentTN21

tends to zero. This signifies that all the diffusing particles pass the multitrap system[see Eq.(18)].
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EPsx,x̀md = −E
sxr−x̀md

sx−x̀md

Fsx,x̀mddx

= −E
sxr−x̀md

sx−x̀md S−
gk

sx − x̀md2Ddx

= − gkS 1

sx − x̀md
−

1

sxr − x̀md
D

= − gkS 1

sx − x̀md
D ,

0 ø x,x̀m ø L, 1 ø mø N, s20d

where we assume that the reference pointxr is at infinity.
Thus we may write the total energy of the diffusing particles
in the presence of field as

EtotalsVÞ0d
sx,x̀m,td = EKsVÞ0d

sx,x̀m,td + EPsx,x̀md,

0 ø x,x̀m ø L, 1 ø mø N, t . 0, s21d

whereEKsVÞ0d
sx, x̀m,td and EPsx,x8md are given, respectively,

by Eqs.(19) and(20). In the absence of an external field the
total energy is

EtotalsV=0d
sx,x8m,td = EKsV=0d

sx,x8m,td + EPsx,x8md

=
1

2
rV=0sx,x8m,tdv̄2

D + EPsx,x8md

=
1

2
fAr1V=0

sx,td + Br2sx,x8m,tdg
D

t
,

0 ø x,x8m ø L, 1 ø mø N, t . 0, s22d

wherer1V=0
is the imperfect trap component of the density

for V=0 and is given asr1V=0
=er fsx/2ÎDtd+expsk2Dt

+kxder fcskÎDt+x/2ÎDtd [see Eq(6) in Ref. [9]]. r2sx, x̀m,td
and EPsx, x̀md are given, respectively, by Eqs.(6) and (20).
The coefficientsA and B in the last two equations are nu-
merically determined in this section from the singles4N
34Nd matrix method[see the discussion after Eq.(29) in
Ref. [9]].

We now show that increasinguVu by even a small amount
may change the energy in such an unexpected manner that it
results, as seen in the following section, in a phase transition
of the corresponding specific heatCh. This may realized
from panels A–D of Fig. 2 which all show three dimensional
surfaces of the energyE as function ofx andc. Panels A and
B are both drawn forN=2, x8m=Lc/Ns1+cd, k= t=g=1, L
=30, Do=0.8,Di =0.4, 20ùcù0.5, 40ùxù0, and differ by
the value ofV which is 2 for panel A and 5 for B. Thus by
comparing them one may realize that increasingV by only
three units causes a disproportionally large increase ofE
from uEu <12 in panel A toE<14000 in B. This large jump
of energy entails a corresponding discontinuous change in
the values of the specific heatCh which implies, as will be
shown, that it goes through a phase transition. The same
result is obtained also for negativeV but compared toV.0

the changes obtained are larger and found at smaller values
of negativeV. This may be seen in panels C and D of Fig. 2
which are both drawn forN=5, x8m=2Lc/Ns1+cd+L /Ns1
+cd, k=g= t=1, L=30, Do=0.8, Di =0.4, 20ùcù0.5, 40
ùxù0, and differ byV which is −0.5 for panel C and −0.8
for D. Thus by comparing these two subfigures one may
realize that decreasingV by only three-tenths from −0.5 to
−0.8 results in a giant change of the energy fromuEu <10 in
panel C toE<108 in D. This entails, as will be shown in the
following section, a corresponding phase transition of the
specific heatCh. One may explain these large changes of the
energy by reasoning that increasing the intensity of the field
uVu beyond some limit causes the particles to overcome any
resistance related to the diffusion in the presence of traps.
Thus their energy increases disproportionally to the change
of uVu that causes it. A similar behavior is encountered in
laser tubes[27] when the pumping energy(field) attains a
limit value which causes the intensity of the produced light
to increase in a phase transitional manner.

It is expected, regarding the dependence of the energy
upon the trapping ratek, that the largerk becomes the more
controlled will be the diffusing particles by the traps in
which case the kinetic(and the total) energy of these par-
ticles decrease. This is shown from recalling that forN
=2,V=5,k=1,t=g=1,L=30,Do=0.8, Di =0.4,x̀=Lc/Ns1
+cd ,20ùcù0.5, and 40ùxù0 we have obtained that the
larger values of the energy areE<14000. Now, it has been,
numerically, found(not shown) that if k is raised fromk=1
to k=5, keeping the values of all the other parameters as
before, the larger values of the energy are decreased toE
<8000. Whenk=10 we find thatE<5000 and fork=15 the
largerE further decreases toE<3000. A similar behavior of
decreasing energies for largerk is found also for negativeV.

IV. SINGLE- AND DOUBLE-PEAK PHASE TRANSITION
IN THE SPECIFIC HEAT OF THE BOUNDED

MULTITRAP SYSTEM

The average energy from which one may derive most of
the statistical mechanics variables such as the specific heat
Ch, the free energyF, the entropyS, etc., may be written as
kEtotall=oEtotale

−bEtotal/oe−bEtotal, whereb=1/kbT, kb is the
Boltzmann constant, andT is the temperature in kelvin. Sub-
stituting in the former equation the appropriate expression
for Etotal from Eqs.(21) or (23) yields, respectively, the av-
erage energy for the presence or absence of an external field.
From the expression of the average energykEtotall we obtain
the specific heatCh,

Ch =
] kEtotall

] T

=
]

] TSo Etotale
−bEtotal

o e−bEtotal
D

=
1

T2skEtotal
2 l − kEtotall2d. s23d

Figure 3 shows a three dimensional surface ofCh from Eq.

D. BAR PHYSICAL REVIEW E 70, 016607(2004)

016607-6



(23) as function of the ratioc and the temperatureT where
no external field is present in which case the appropriate
energy to be substituted in the last equation is that from Eq.
(22). Figure 3 is drawn forN=2, k=1, L=30, t=1, g=1,
x̀m=Lc/Ns1+cd, 20ùcù0.5, and 10ùTù0.1. As seen, the
height of the surface forCh increases with growing values of
the ratioc untill some maximum(not shown in the figure).
One may also realize that at small values ofc and T the
surface ofCh jumps upward to its local maximal values from
which it descends in a similar manner to zero. These local
maxima are seen to be arrayed along horizontal lines which
form, in relation to their neighboring lines, a sharp edge
which becomes widened and flattened asc grows.

The specific heatCh is certainly undifferentiable at the
sharp edge so it goes through a phase transition at these
points [13,26]. We calculate at the following the critical ex-
ponentsx [26] associated with this and other discontinuities
of Ch. We find that increasingN or k or g, while keeping the
values of the other parameters constant, does not cause any
change in the form ofCh shown in Fig. 3 except to its trans-
lation from its position along thec axis to one that tends to
be aligned along theT axis. That is, the same surface ofCh is
rotated in thec-T plane for growing values ofN or k or g. If,
on the other hand, the value of the total lengthL is simulta-
neously increased with that ofN then the remarked rotation

of the surface ofCh, obtained for large values ofN, is
avoided and this surface remains in its form and place. Un-
like the case ofVÞ0, to be discussed below, we find forV
=0 that except for the remarked points of discontinuity asso-
ciated with smaller values ofc and T there are no other
points at whichCh becomes discontinuous.

We discuss now the specific heatCh obtained when an
external field is included with each trap. It is found, as for
the V=0 case, that the corresponding curves of the specific
heatCh jumps abruptly from zero for smallc andT to their
maximal values from which they similarly descend to zero.
Also, as for Fig. 3, these maximal values are arranged along
lines which form a sharp edge for smallc andT which be-
come widened and flattened asc increases. The specific heat
function is clearly undifferentiable along the sharp edge
which implies, as for theV=0 case, that it goes through a
phase transition[13,26] at these points. But, in contrast to the
former case, there exist other points, not at small values ofc,
for which the specific heat goes through a phase transition.
This is demonstrated in Fig. 4 which is drawn forV=5, N
=2, k=g= t=1, L=30, x̀m=Lc/Ns1+cd, and which is related
not only to the more obvious discontinuity of the two spiky
columns at smallc and T but also to that of the apparently
continuous surface at largec’s. This is clearly shown in Fig.
5 in which we isolate from the surface of Fig. 4 four curves

FIG. 2. Each of the four panels shows a three-dimensional surface of the energy from Eq.(21) as a function ofx and the ratioc. The
lengthx is given in units of cm,c is dimensionless, and the energyE is given in units of ergs. Panels A and B are both drawn forN=2,
Do=0.8,Di =0.4, t=k=g=1, L=30, andx̀m=Lc/Ns1+cd but V=2 for panel A andV=5 for B. Note that by increasing the value ofV from
2 to 5 results in an unexpected large change of the energy fromuEu <10 to E<14 000. Similar results are shown in panels C and D which
are both drawn forg=k= t=1, L=30,Do=0.8,Di =0.4,N=5, andx̀m=2Lc/Ns1+cd+L /Ns1+cd but V=−0.5 for panel C andV=−0.8 for D.
Note that the giant change fromuEu <18 in panel C toE<53108 in panel D that results from slightly changing fromV=−0.5 to
V=−0.8. The negative values ofE result from the negative potential energy.

PHASE TRANSITION IN THE BOUNDED ONE-… PHYSICAL REVIEW E 70, 016607(2004)

016607-7



of the specific heatCh as a function of the temperatureT for
c=3,3.1,3.2,3.3. One can see that each curve of the four
shown assumes the form of two inverted and indented teeth
which are clearly undifferentiable and so they constitute a
double-peak phase transition. We thus see, as remarked, that
the unexpected large change in the values of the energy in
panel B of Fig. 2, which is drawn for the same values ofV,
N, k, L, g, t, and x8m as those of Fig. 4 and 5, is affected
through the double-peak phase transition of the correspond-
ing specific heat of Fig. 5. This depends, as noted, upon the
value of x8m=Lc/Ns1+cd, so we expect that changing its
value may result in finding double-peak phase transitions at

other values ofc andN. This is indeed the case as we find
(not shown here), for example, forN=4, 10.6ùcù10, and
x8m=2Lc/Ns1+cd+L /Ns1+cd, which is the location of the
left hand face of the second trap.

From the former discussion we see that for positive values
of V there is associated a single peak for the smaller values
of c and a double peak for some higher values of it. When
we consider, however, negative values ofV we find that the
double peaks generally emerge for the smaller values ofc.
This is demonstrated in the right hand panel of Fig. 6 which
shows two curves of the specific heatCh as function of the
temperatureT for V=−1.92, g=k= t=1, L=30, Do=0.8,

FIG. 3. A three-dimensional
surface of the specific heatCh

from Eq. (23) as function of the
ratio c and the temperatureT and
in the absence of an external field.
The units ofCh andT in this fig-
ure and in Fig. 4–6 are erg/K and
kelvins, respectively, andc is di-
mensionless. The appropriate ex-
pression for the energy substituted
in Eq. (23) is that from Eq.(22).
The figure is drawn forN=2, Do

=0.8, Di =0.4, L=30, k=g= t=1,
and x̀m=Lc/Ns1+cd. Note the
sharp edge of the surface for small
c and T which becomes widened
and flattened asc increases.

FIG. 4. The specific heatCh

from Eq.(23) as function ofc and
T. This figure is drawn forV=5,
N=2, Do=0.8, Di =0.4, L=30, k
=g= t=1, and x̀m=Lc/Ns1+cd.
Note that these are the values for
which panel B of Fig. 2 is drawn.
From that panel we see that
changing the value ofV fron 2 to
5 results in a large change of the
energy. This change is demon-
strated in the discontinuity ofCh

for either smallc as in here or for
larger values of it as in Fig. 5. The
units of Ch and T are, as re-
marked, erg/K and kelvins, re-
spectively, andc is dimensionless.
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Di =0.4, x̀m=Lc/Ns1+cd, and for the two values ofc
=0.39,0.4. In this case the first peaks of the two curves are
small compared to the second peaks. The left hand panel
shows eight double-peak curves of the specific heat as func-
tion of T for x̀m=2Lc/Ns1+Cd+L /Ns1+cd, N=5, V=−0.37,
g=k= t=1, and c=1.5+0.065n,n=1,2, . . .7. These phase
transitions ofCh correspond to the unexpected large change

of the energy which is shown in panel C and D of Fig. 2 for
exactly these values ofc,N,t ,g,k, x̀m, and in the neighbor-
hood ofV=−0.5. These subfigures demonstrate, as remarked,
that slightly changing the value ofV in the neighborhood of
V=−0.5 by only three-tenths changes the larger values of the
energy fromuEu <101 to E<108. This change in the energy
is demonstrated in the double-peak phase transition shown in

FIG. 5. The figure shows four
different curves of the specific
heat Ch in units of erg/K as a
function of the temperatureT in
units of kelvins for N=2, V=5,
Do=0.8, Di =0.4, g=k= t=1, L
=30, x̀m=Lc/Ns1+cd and for the
following four values of c; c
=3,3.1,3.2,3.3. The double peaks
are clearly seen in each curve.
Note that the spiky forms of Fig. 4
are obtained for exactly the same
values as in this figure except that
c is smaller. Thus one may con-
clude from Figs. 4 and 5 that for
positiveV there exist single peaks
for small c and double peaks for
the larger values of it.

FIG. 6. The two panels show
double peaks of the specific heat
Ch as a function ofT for negative
V and Do=0.8, Di =0.4, g=k= t
=1, andL=30. The panel at the
left shows eight double-peak
curves for N=5, V=−0.37, x̀m

=2Lc/Ns1+cd+L /Ns1+cd, and
the eight values of c=1.5
+0.065n,n=1,2, . . .7. Thepanel
at the right shows two double-
peak curves forN=4, V=−1.92,
x̀m=Lc/Ns1+cd, and the two val-
ues ofc=0.39,0.4.Ch and T are
given in units of erg/K and
kelvins, respectively.
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the left hand panel of Fig. 6. Note that all the eight first
peaks, as well as all the second peaks, touch each other and
seem as one curve. The appropriate energy to be associated
with negativeV is that of the expression(21) in which one
should take, as remarked, the minus sign in front ofV2/2.

We may suggest an explanation for the occurrence of the
mentioned large changes in the energy which entail the cor-
responding discontinuous peaks in the specific heatCh. We
confine our attention to the discussed examples ofN=2 and
N=5 when one respectively changes fromV=2 to V=5 and
from V=−0.5 toV=−0.8. As remarked, the change ofV for
N=2 entails a change in the larger values of the energy from
E<12 to E<14000. Looking at the expression(19) for E
one may realize that the large increase inE results from a
corresponding increase of the imperfect densityr1 from Eq.
(7) (the ideal densityr2 does not depend uponV and so it
does not change withV [see Eq.(6)]). As seen from Eq.(7)
the dependence ofr1 upon V is mainly exponential. Thus
whenV changes from 2 to 5 we find for the ratior1V=5

/r1V=2

the value ofr1V=5
/r1V=2

=2.309631012 where we use the
same values used for all the other parameters that lead to
panel A and B of Fig. 2. That is, the density forV=5 has
enormously grows in relation to that forV=2. This is to be
compared, for example, to water when one lower its tem-
perature from the gaseous state to the liquid one in which
case the density of the water molecules grows in a phase
transitional manner. This behavior is repeated when one con-
tinues to decrease the temperature to 0°C from the liquid
state to the solid one in which case the density of the water
molecules increases again in a phase transition manner. We
have mentioned in the previous section the example of laser
tubes for which the intensity of light increases greatly when
the pumping energy(corresponding toV here) attains a spe-
cific value. This occurs because a macroscopic aggregate of
atoms has been transferred by the pumping energy into the
appropriate laser state[11]. A similar growth of the density
occurs, as remarked, also here when one increases forN=2
the velocityV from 2 to 5.

The double peaks shown in Fig. 6 which are associated
with small negativeV may be explained by noting that the
external diffusion constant employed here isDo=0.8 (the
internal diffusion constant is even lowerDi =0.4). That is,
when one turns on an external field which is directed oppo-
site to the diffusive motion then when the value of this field
becomesV=−0.8 it actually neutralizes and cancels the in-
fluence of the traps on the particles so that their energy be-
comes very large.

The appearance of the double peaks for these values ofV
demonstrates further(more than the single peak) the large
change that the density and the energy have passed through
when V changes as described. We must, however, note that
these peaks depend not only uponV but also upon the other
parameters, such asN, xm, t, etc., that control the behavior
of E.

One may calculate the related critical exponentsx [26]
associated with these phase transitions by using the follow-
ing equation in the neighborhood of the critical temperature
Tc [26]:

Chsed = A + Bex, s24d

wheree=sT−Tcd /Tc and A, B are constant. The first order
derivative ofChsed diverges atT=Tc so the critical exponent
x may be obtained from[26]

x = 1 + lim
e→0

lnuC̀hsedu
lnsed

= 1 + lim
e→0

lnU B

exU
lnsed

, s25d

where the unity term denotes the first order derivativeC̀hsed
of the specific heat with respect toe. The value ofx may be
obtained by plotting the curve ofChsed in the close neigh-
borhood ofT=Tc and one can see from Figs. 3–6 thatx
assumes different values. Thus assigning to the constantsA,
B the respective values of 0 and 1 and plotting, as remarked,
the graphs ofChsed in the immediate neighborhood of the
single peaks in Fig. 3, which are located at smallc and T,
one may calculatex, using Eqs.(24) and(25), asx< 1

2. This
value changes with respect to the single peaks of Fig. 4
which are also located at smallc andT. That is, repeating the
same procedure one may obtain the value ofx< 3

5. For the
eight first and second peaks in the left hand panel of Fig. 6
we find the respective values ofx< 1

3 andx< 1
2. Thex of the

double peaks of Fig. 5 and also of the first peaks in the right
hand panel of Fig. 6 isx< 1

9.
Comparing the phase transition behavior of the bounded

one-dimensional multitrap system to that of the correspond-
ing quantum array of the bounded one-dimensional multibar-
rier potential[14] one may notice the following similarities
and differences: The specific heats of both systems exhibit
the same discontinuous jump at small values ofT andc but
whereas in the multitrap systemCh decreases, for growing
values ofT, to zero the corresponding quantumCh does not
vanish but tends, for largeT, to a finite value(see Figs. 1–7
in Ref. [14]). Also, the phenomenon of the double peaks at
which the specific heatCh is undifferentiable is discernable
in both systems.

The variation of the critical exponentx may be explained
by noticing from Figs. 3–6 that the different peaks shown in
these figures correspond to different values ofN andc. Re-
membering thatN and c respectively denote the number of
traps and the ratio of their total interval to their total width
one may realize that they, actually, control the shape and
form of the multitrap system. That is, Figs. 3–6 with the
different values ofN and c actually correspond todifferent
systemsthrough which the particles pass and not to different
parameters of the same system. Thus one may expect differ-
ent values of the critical exponent to be associated with these
different systems. We note, however, that the difference be-
tween these values is not large.
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Using the expressions(21) and (22) for the energy one
may obtain the other variables of statistical mechanics. For
example, the free energyF is calculated, for either the pres-
ence or absence of the external field, from Ref.[24]
F=−kbT lnsoe−bEtotald. Using the last equation one may write
the entropyS for the multitrap system[24],

S= −
] F

] T

=
]

] T
fkbT lnso e−bEtotaldg

= kb lnso e−bEtotald + kbb
o Etotale

−bEtotal

o e−bEtotal
. s26d

As for the specific heatCh one may drawS for different
values of the parametersN, k, g, x̀m, t, L, and c. If, for
example, we draw the surface ofS for exactly the same val-
ues of the mentioned parameters as those of Fig. 4 one may
see(not shown here) two separate lobes for smallc and T
which correspond to the two spiky columns of Fig. 4.

V. CONCLUDING REMARKS

We have discussed the diffusion limited problem related
to the bounded one-dimensional imperfect multitrap system
in the presence of external fieldV. The analytical methods
previously used[9,10] to discuss the transmission of the par-
ticles through this system in the absence of an external field

were also used here in the presence of it. Thus theN
s232d transfer matrices were used, as in Ref.[9], for dis-
cussing the transmission through the multitrap system for
VÞ0 and the singles4N34Nd transfer matrix for studying
the energy and the corresponding specific heatCh. It has
been found, as for theV=0 case in Ref.[9], that for certain
values of the parameters associated with the system the
transmission coefficient[9,10] of the diffusing particles tends
to unity whenN and c become large in which case all the
particles diffuse through all the traps. This has been shown
not only for positiveV which pushes the particles towards
the traps but also for negative values of it that repel the
particles towards the negative direction of thex axis.

The unique characteristics of the mutitrap system become
more unexpected regarding the energy of the diffusing par-
ticles in the presence of an external field. Thus it has been
found that increasingV, for either positive or negative values
of it, by even a small amount results in a disproportionally
large increase in the energy of the diffusing particles so that
trying to calculate the related specific heatCh we find that it
goes through a phase transition. Moreover, for certain values
of the parameters associated with the multitrap system, such
as its total lengthL, the number of trapsN, the ratioc, the
time t, the locationx8m at which the particles are initially
concentrated, and the fieldV, one may find that the men-
tioned phase transition is demonstrated in the form of a
double peak. The value of the related critical exponents as-
sociated with these phase transitions were found to vary be-
tween 1

9 and 3
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